Classification of Mammograms into Normal, Benign and Malignant based on Fractal Features

نویسنده

  • Deepa Sankar
چکیده

Modern life style of women has made them more vulnerable to breast cancer and it is considered as the largest cause of mortality among women. This paper presents a novel method to classify mammograms into normal ones, with benign and malignant microcalcifications, and with malignant and benign tumors using fractal features derived from fractal dimension. Here, three fractal dimension estimation methods such as Differential Box Counting (DBC), Triangular Prism Surface Area (TPSA) and Blanket methods are used for computing the six fractal features utilized for the classification. The new fractal feature f6 obtained using TPSA method is found to be the best with 100% classification accuracy. The average value of f6 is found to be 0.1110, 0.2875, 0.4743, 0.5271 and 0.8558, for normal, benign masses, benign and malignant microcalcifications and malignant masses respectively. The classification performance of the different features was analyzed using the Receiver Operating Characteristics (ROC).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal Features based on Differential Box Counting Method for the Categorization of Digital Mammograms

Computer aided diagnostic systems can assist radiologist in detecting breast cancer at an early stage with improved mammogram interpretation efficiency. In this paper, six fractal based features obtained from the fractal dimension computed using differential box counting method, are used for distinguishing between normal mammograms from the cancerous ones. The new fractal feature f6 derived fro...

متن کامل

Computerize classification of Benign and malignant thyroid nodules by ultrasound imaging

Introduction: Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Ultrasound is the chosen imaging technique for assessment of thyroid nodules. Confirmation of the diagnosis usually demands repeated fine needle aspiration biopsy (FNAB). So, current management, has morbidity and non zero mortality. The goal of the present study ...

متن کامل

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Automatic Classification of Benign And Malignant Liver Tumors In Ultrasound Images

Introduction: Differentiation of benign and malignant liver tumors is very important for finding appropriate treatment procedure. Human eyes sometime are not able to diagnose the type of liver tumor. Texture analysis is considered as a suitable method to increase the diagnostic power of medical images. In this study texture analysis is employed in order to classification of ben...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016